Monday 30 March 2015

Evolusi Molekuler

EVOLUSI MOLEKULER

A.Area Pembahasan Evolusi Molekuler
    Evolusi molekuler meliputi dua area pembahasan, yaitu: 
 1.Evolusi molekuler 
      Area pertama, evolusi makromolekuler menunjukan pembentukan gen dan pola perubahan yang tampak pada materi genetik (misalnya urutan DNA) dan produkinya (missal protein) selama waktu evolusi dan terhadap mekanisme yang bertanggung jawab untuk sejumlah perubahan tersebut.
2.Rekontruksi sejarah evolusi gen dan organisme
     Area kedua dikenal sebagai “molekuler phylogeny” menjelaskan sejarah evolusi organisme dan makromolekul seperti adanya keterlibatan data-data molekuler. 
     Dua area pembahasan (1) pada objek pertama adalah menjelaskan tentang pembentukan, penyebab dan efek dari perubahan evolusi molekul dan (2) pada objek kedua menggunakan molekul hanya sebagai alat untuk merekontruksi sejarah biologi organisme dan konstituen genetikanya. Walaupun kenyataannya kedua disiplin ilmu di atas saling berkait erat. Kemajuan di satu area akan memfasilitasi perkembangan studi di area lain. Contoh, pengetahuan tentang filogeni adalah sangat esensial untuk determinasi jenis perubahan pada karakter molekuler. Sebaliknya, pengetahuan terhadap pola dan rata-rata perubahan melokul adalah sangat krusial dalam usaha untuk rekontruksi sejarah evolusi kelompok organisme.

B.Kegunaan Sequens DNA Mitokondria dan Kloroplas dalam Analisis Filogeni
        DNA terdapat di nukleus dan dalam organel (ekstrakromosomal DNA). Pada tanaman, DNA juga terdapat pada mitokondria dan kloroplas. Sekuens kloroplas DNA komplit telah terdapat untuk tanaman Nicotiana tabacum, Marchantia polymorpha, Oryza sativa dan Epifagus virginiana dan lain-lain. Informasi ini tersedia untuk digunakan dalam studi perbandingan struktur dan kandungan gen pada genom kloroplas. Karakteristik kloroplas yang memiliki kecepatan substitusi nukleotida yang konservatif menyebabkan penggunaan kloroplas DNA untuk menentukan filogeni tanaman dan evolusi tanaman. Kloroplas DNA diwariskan secara maternal pada sebagian besar angiospermae, sedang pada conifer pewarisannya adalah paternal. Terdapat perkecualan, seperti pada tanaman kiwi, kloroplas DNA diwariskan secara paternal.
     Analisis genetik dapat dilakukan dengan menggunakan penanda molekuler baik pada DNA sitoplasma maupun pada DNA inti. Pada DNA sitoplasma, analisis genetik dapat dilakukan dengan perunutan (sekuensing) DNA kloroplas (cpDNA) yang relatif lebih konservatif dibandingkan dengan DNA-inti. Ciri molekuler juga dapat digunakan untuk mengidentifikasi kultivar dan menduga kekerabatan antar plasma nutfah, sehingga variasi genotipe antar kultivar dapat dibedakan dengan jelas dan dapat dihindari adanya duplikasi aksesi 
       DNA mitokondria juga diwariskan secara uniparental yaitu secara maternal. Tersedianya primer universal untuk amplifikasi sekuen cpDNA dan mtDNA menyebabkan kemudahan dalam analisa filogeni tanaman dengan menggunakan cpDNA dan mtDNA. Teknik yang bervariasi digunakan untuk mengamati variasi pada kloroplas DNA dan mitokondrial DNA. Teknik yang paling sering digunakan adalah RFLP dan PCR-RFLP. Pada PCR-RFLP, sekuen kloroplas atau mitokondria diamplifikasi dengan PCR. Variasi dilihat dari ukuran sekuens. Jika tidak terdapat perbedaan ukuran hasil PCR (tidak terdapat length polymorphism), maka produk PCR selanjutnya dipotong dengan enzim restriksi. Sequencing daerah cpDNA atau mtDNA juga merupakan salah satu teknik untuk melihat perbedaan basa nukleotida antar sekuens.

C.Kekerabatan Organisme dengan Melihat Pohon Filogeni berdasarkan Sequens DNA mitokondria
       Pada umumnya material DNA yang digunakan dalam analisa genetik berasal dari DNA inti, tetapi sumber DNA untuk organisme eukariot dapat pula diperoleh dari organel-organel sitoplasmik. Salah satu organel yang dapat menjadi sumber bahan genetik adalah mitokondria (Duryadi 1994). Ukuran genome mitokondria hewan relatif kecil dibandingkan dengan mitokondria dan khloroplast tanaman yaitu berukuran kurang dari 40 Kb. 
    Analisis DNA mitokondria telah digunakan secara luas dalam mempelajari evolusi, struktur populasi, aliran gen, hibridisasi, biogeografi dan filogeni suatu spesies hewan (Moritz et al. 1987). Di samping itu, hal yang mendukung penggunaan mtDNA sebagai penanda genetik salah satunya adalah karena mtDNA terdapat dalam copy yang tinggi, sehingga memudahkan dalam pengisolasian dan purifikasi untuk berbagai keperluan analisa genomnya. Selain itu, laju evolusinya tinggi (yaitu 10x lebih cepat dibandingkan pada DNA inti), diturunkan secara maternal (maternal inheritance) dan mempunyai jumlah copy tinggi. Basa-basa dari gen mitokondria ini dapat di buat copynya dalam jumlah besar dengan mengamplifikasinya melalui Polymerase Chain Reaction (PCR).
     Satu kekurangan bila kita memakai DNA mitokondria adalah bahwa semua mitokondria merupakan hasil turunan dari ibu. Walaupun sperma juga mengandung mitokondria, itu tidak dilepaskan saat fertilisasi sel telur dan tidak diwariskan ke keturunannya. Di sisi lain, analisis mitokondria memberikan hasil yang jelas mengenai silsilah dari wanita tersebut, sebagaimana komplikasi akibat rekombinasi dapat diabaikan. Lebih jauh lagi, sel eukaryotik mengandug hanya satu nukleus tapi memiliki banyak mitokondria sehingga bisa didapatkan ribuan DNA mitokondria. Hal ini membuat ekstraksi dan sekuensing DNA mitokondria menjadi lebih mudah dari segi teknikal.
Sekitar 99% dari material genetik organisme eukariot terdapat dalam inti dan sisanya 1% terdapat di dalam mitokondria. Mitokondria adalah organel di sitoplasma tempat berlangsungnya respirasi. DNA mitokondria mengandung sejumlah gen penting untuk respirasi dan fungsi lainnya. Secara fisik mtDNA ini terpisah dari DNA lainnya, sehingga relatif lebih mudah untuk mengisolasinya (berukuran relatif kecil yaitu hanya 16.000-20.000 pasang basa) dibandingkan jika harus mengisolasi milyaran nukleotida dari genom inti.
   DNA mitokondria berbentuk sirkuler berutas ganda. Setiap mtDNA memberi kode untuk terbentuknya 2 RNA ribosom, 22 RNA transfer dan 13 polipeptida (beberapa belum diketahui fungsinya). Posisi pada mtDNA telah terpetakan, yang terdiri dari daerah 12SrRNA, 16SrRNA, ND1, ND2, CO I, CO II, ATP, CO III, ND3, ND4, ND5, ND6, Cyt b dan D-loop (displacement loop) yang terkait dalam proses replikasi (Brown et al. 1979). Adapun genom mitokondria mamalia dapat dilihat pada gambar 4 berikut ini.

Gambar. Genom Mitokondria Mamalia

     Posisi yang berbeda dari masing-masing gen-gen mitokondria tersebut ternyata memiliki laju evolusi dengan kecepatan yang berbeda pula, yaitu ada yang bersifat relatif konserve (laju perubahannya kecil) seperti 16S rRNA dan 12S rRNA, lajunya sedang (cytokrom b) dan lajunya cepat (CO I & D-Loop).
        Daerah D-loop atau dikenal juga dengan nama ”daerah kontrol” (control region) yaitu tempat yang mengatur replikasi dan transkripsi mtDNA yaitu awal dari replikasi rantai berat (Ho) (Foran et al. 1988). Daerah ini telah dibuktikan merupakan bagian yang paling bervariasi pada genom mitokondria. Laju mutasi pada daerah ini diperkirakan lima kali lebih cepat dibandingkan dengan bagian lain pada genom mitokondria ((Douzery & Randi 1997). Mamalia mempunyai D-Loop terletak antara tRNAPRO dan tRNA Phe (Foran et al. 1988). Daerah ini terdiri dari 3 bagian yaitu : a) bagian kanan D-Loop (region I) yang mengandung Promotor Rantai Berat (HSP) dan Promotor Rantai Ringan. Pada bagian ini juga terdapat daerah Sekuen Conserve Bloks (CSB 1-3) serta repeat tandem; b) bagian tengah yang merupakan Daerah Central Conserve (CCR) berfungsi pada pengaturan dari replikasi (Saccone et al. 1991). Diluar CCR masih pada bagian tengah ini terdapat tiga Conserve Sekuen Bloks (CSB 1-3) pada ujung tiga dari rantai ringan yang berlokasi antara promotor rantai ringan (L- Strand) dan rantai berat (H-strand). CSB ini diasosiasikan sebagai inisiasi dari replikasi rantai berat.; c) bagian kiri D-Loop yang terdiri dari daerah termination associated sequence (TAS) dan bagian lain berupa beberapa dari daerah repeat tendem yang terletak dekat dengan tRnaPro (Saconne et al. 1991). Panjang fragment sekuensi yang terkecil berukuran 20 bp (Cunningham & Meghen 2001).
       Analisis pada daerah CR (D-loop) digunakan untuk melihat keragaman antar subspecies ataupun antar populasi (Brown 1985). Daerah yang mengandung D-Loop ini diketahui amat cepat berkembang dari bagian mtDNA lainnya. Hal ini karena terjadinya akumulasi subtitusi basa, proses insersi dan delesi yang lajunya amat cepat bila dibandingkan dengan DNA inti (Foran et al. 1988). Pada manusia diketahui laju subtitusi daerah tersebut kira-kira 2,8 – 5 kali lebih tinggi dari pada laju daerah genom Mt lainnya (Taylor et al. 2001). D-loop cocok digunakan untuk mendeteksi perbedaan sekuen nukleotida pada hewan vertebrata (Aquadro & Greenberg 1982). Analisis mtDNA pada D-loop juga telah digunakan untuk menduga keragaman genetik dan struktur populasi pada hewan avertebrata (Brown et al.1988). 
       Cytochrome c oxidase (CO I) merupakan enzim mitokondria, terdiri atas Cytochrome c oxsidase I, II dan III (Michel et al. 1998). CO I dapat digunakan sebagai DNA barcoding (Moritz & Cicero 2004) telah digunakan diantaranya pada jenis burung di Amerika utara dan jenis burung yang telah di barcoding tersebut dilaporkan berjumlah (260- 667 spesies). CO I merupakan gen kandidat sebagai DNA barcoding karena memiliki konsentrasi sekuens asam amino yang tinggi dan besar kemampuan pada primer yang digunakan. Menurut (Hebert et al. (2003) CO I merupakan resolasi dalam mengetahui keanekaragaman pada semua jenis hewan. Hal ini menunjukkan bahwa gen CO I cukup variable diantara spesies yang dapat digunakan sebagai marker dalam menentukan filogeni dan studi populasi. Selain itu gen CO I mutasinya lebih besar di bandingkan dengan 12S dan 16S (Hebert et al. 2003).

D.Ruang Lingkup Biologi Molekuler
     Biologi Molekuler merupakan cabang ilmu pengetahuan yang mempelajari hubungan antara struktur dan fungsi molekul-molekul hayati serta kontribusi hubungan tersebut terhadap pelaksanaan dan pengendalian berbagai proses biokimia. Secara lebih ringkas dapat dikatakan bahwa Biologi Molekuler mempelajari dasar-dasar molekuler setiap fenomena hayati. Oleh karena itu, materi kajian utama di dalam ilmu ini adalah makromolekul hayati, khususnya asam nukleat, serta proses pemeliharaan, transmisi, dan ekspresi informasi hayati yang meliputi replikasi, transkripsi, dan translasi.
      Meskipun sebagai cabang ilmu pengetahuan tergolong relatif masih baru, Biologi Molekuler telah mengalami perkembangan yang sangat pesat semenjak tiga dasawarsa yang lalu. Perkembangan ini terjadi ketika berbagai sistem biologi, khususnya mekanisme alih informasi hayati, pada bakteri dan bakteriofag dapat diungkapkan. Begitu pula, berkembangnya teknologi DNA rekombinan, atau dikenal juga sebagai rekayasa genetika, pada tahun 1970-an telah memberikan kontribusi yang sangat besar bagi perkembangan Biologi Molekuler. Pada kenyataannya berbagai teknik eksperimental baru yang terkait dengan manipulasi DNA memang menjadi landasan bagi perkembangan ilmu ini.
       Biologi Molekuler sebenarnya merupakan ilmu multidisiplin yang melintasi sejumlah disiplin ilmu terutama Biokimia, Biologi Sel, dan Genetika. Akibatnya, seringkali terjadi tumpang tindih di antara materi-materi yang dibahas meskipun seharusnya ada batas-batas yang memisahkannya. Sebagai contoh, reaksi metabolisme yang diatur oleh pengaruh konsentrasi reaktan dan produk adalah materi kajian Biokimia. Namun, apabila reaksi ini dikatalisis oleh sistem enzim yang mengalami perubahan struktur, maka kajiannya termasuk dalam lingkup Biologi Molekuler. Demikian juga, struktur komponen intrasel dipelajari di dalam Biologi Sel, tetapi keterkaitannya dengan struktur dan fungsi molekul kimia di dalam sel merupakan cakupan studi Biologi Molekuler. Komponen dan proses replikasi DNA dipelajari di dalam Genetika, tetapi macam-macam enzim DNA polimerase beserta fungsinya masing-masing dipelajari di dalam Biologi Molekuler.
     Beberapa proses hayati yang dibahas di dalam Biologi Molekuler bersifat sirkuler. Untuk mempelajari replikasi DNA, misalnya, kita sebaiknya perlu memahami mekanisme pembelahan sel. Namun sebaliknya, alangkah baiknya apabila pengetahuan tentang replikasi DNA telah dikuasai terlebih dahulu sebelum kita mempelajari pembelahan sel.
       Beberapa aspek biologi yang secara khusus dipelajari dalam biologi molekuler antara lain adalah bahan genetik dan proses sintesis protein. Kedua aspek tersebut merupakan satu kesatuan yang tidak dapat dipisahkan karena proses sintesis protein tergantung pada informasi yang ada pada bahan genetik. Di lain pihak, replikasi bahan genetik juga tergantung pada aktivitas bermacam-macam protein. Pembahasan mengenai kedua aspek tersebut dapat diperluas mulai dari struktur dasarnya sampai proes pengendalian sintesisnya. Studi mengenai bahan genetik dan proses sintesis protein akhirnya juga mampu menyingkap perbedaan yang lebih dalam antara kelompok jasad prokaryot dan eukaryot. Dengan demikian, perbedaan antara kedua kelompok jasad tersebut tidak semata-mata perbedaan morfologi dan sifat-sifat fisiologis belaka. Studi juga menunjukkan bahwa meskipun ada perbedaan-perbedaan mendasar antara kedua kelompok jasad tersebut, namun terdapat juga kesamaan-kesamaan yang menunjukkan hubungan kekerabatan satu sama lain.


DAFTAR PUSTAKA

Sukmawaty, Erni dkk. 2010. Evolusi Molekuler. http://www.scribd.com/doc/71267613/evolusi-                molekuler. Diakses pada tanggal 14 Mei 2012
Yuwono, Triwibowo. 2005. Biologi Molekuler. Jakarta: Erlangga

0 comments:

Post a Comment